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Abstract 
Fixed point theory is an accurate topic of nonlinear analysis. Also, it is well known that the contraction mapping 

principle. From last four decades, this theorem has undergone various generalizations either by relaxing the condition 

on contractively or withdrawing the requirement of completeness or sometimes even both.  In this paper we stated 

fixed point theorems and its results analysis for weak C-contractions in a partially ordered metric space. 
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     Introduction 
In mathematics, the fixed-point theorem is a result saying that a function F will have at least one fixed point (a point x for 

which F(x)=x, under some conditions on F that can be stated in general terms. Results of this kind are amongst the most 

generally useful in mathematics. There are in the literature a great number of generalizations of the contraction principle 

and the references cited therein). In particular, obtaining the existence and uniqueness of fixed points for self-maps on a 

metric space by altering distances between the points with the use of a certain control function is an interesting aspect. In 

this direction, is addressed a new category of fixed point problems for a single self-map with the help of a control function 

which they called an altering distance function. A mathematical object X has the fixed-point property if every suitably well-

behaved mapping from X to itself has a fixed point. The term is most commonly used to describe topological spaces on 

which every continuous mapping has a fixed point. But another use is in order theory, where a partially ordered set P is said 

to have the fixed point property if every increasing function on P has a fixed point. 
Fixed point theory has fascinated hundreds of researchers since 1922 with the celebrated Banach’s fixed point theorem. 

This theorem provides a technique for solving a variety of applied problems in mathematical sciences and engineering. 

There exists a last literature on the topic and this is a very active field of research at present. There are great numbers of 

generalizations of the contraction principle. Many authors extended some fixed point theorems on metric spaces to cone 

metric spaces. However, it was shown later by various authors that in several cases the fixed point results in cone metric 

spaces can be obtained by reducing them to their standard metric counterparts. And also have introduced the notion of a 

complex-valued metric and some fixed point theorems have been stated. Note that in the above generalizations, only a 2 

metric space has not been known to be topologically equivalent to an ordinary metric. Then there was no easy relationship 

between results obtained in 2-metric spaces and metric spaces. In particular, the fixed point theorems on 2-metric spaces 

and metric spaces may be unrelated easily [1-3] and [6-8]. 
In this paper we stated some fixed point results for weak C-contractions in a partially ordered 2-metric space. 
 
Partially Ordered Metric Space using Fixed Point Theorems 
First we recall few notions and lemmas which will be useful in our theorems analysis as follows: 
Definition1.1:  Let X be a non-empty set and let d: X×X×X→R be a map satisfying the following conditions: 
1. For every pair of distinct points x, y є X, there exists a point z є X like as d(x, y, z) 0.. 
1. If at least two of three points as x, y, z are the same, then we write as d(x, y, z) = 0. 
3. The symmetry: d(x, y, z) = d(x, z, y) = d(y, x, z) = d(y, z, x) = d(z, x, y) = d(z, y, x) for all x, y, z є X. 
4. The rectangle inequality: d(x, y, z) ≤ d(x, y, t) + d(y, z, t) + d(z, x, t) for all x, y, z, t є X. 
Then d is called a 2-metric on X and (X, d) is called a 2-metric space which will be sometimes denoted by X if there is no 

confusion. Every member x є X is called a point in X. 
Definition 1.2:  Let (X, d) be a 2-metric space and a, b є X, r ≥0. The set B(a, b, r) = {x є X : d(a, b, x) < r} is called a 2-

ball centered at a and b with radius r.  And the topology generated by the collection of all 2 balls as a sub-basis is called a 

2-metric topology on X. 
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Definition 1.3:  Let {𝑥𝑛} be a sequence in a 2-metric space (X, d). 
1. {𝑥𝑛} is said to be convergent to x in (X, d), written limn→∞ 𝑥𝑛 = x, if for all a є X, limn→∞ d(𝑥𝑛, x, a) = 0. 
1. {𝑥𝑛} is said to be Cauchy in X if for all a є X, limn, m→∞ d(𝑥𝑛, 𝑥𝑚, a) =0, that is, for each ε > 0, there exists n0 such that 

d(𝑥𝑛, 𝑥𝑚, a) < ε for all n, m ≥n0. 
3. (X, d) is said to be complete if every Cauchy sequence is a convergent sequence. 
Definition 1.4:  A 2-metric space (X, d) is said to be compact if every sequence in X has a convergent subsequence. 
Lemma 1.7: Every 2-metric space is a T1-space. 
Lemma 1.8: (Lemma 4) limn→∞ 𝑥𝑛 = x in a 2-metric space (X, d) if and only if limn→∞ 𝑥𝑛 = x in the 2-metric topological 

space X. 
Lemma 1.9:  (Lemma 5) If T : X →Y is a continuous map from a 2-metric space X to a 2-metric space Y, then limn→∞ 𝑥𝑛 

= x in X implies limn→∞ T𝑥𝑛 = Tx in Y . 
1. It is straightforward from Definition 1.1 that every 2-metric is non-negative and every 2-metric space contains at least 

three distinct points. 
1. A 2-metric d(x, y, z) is sequentially continuous in one argument. Moreover, if a 2-metric d(x, y, z) is sequentially 

continuous in two arguments, after then it is sequentially continuous in all three arguments. 
3. A convergent sequence in a 2-metric space need not be a Cauchy sequence. 
4. In a 2-metric space (X, d), every convergent sequence is a Cauchy sequence if d is Continuous.. 
5. There exists a 2-metric space (X, d) such that every convergent sequence is a Cauchy sequence but d is not continuous. 
 
Results Analysis 
In this section we analysis the weak C-contraction on a partially ordered 2-metric space. 
Definition 1.1 Let (X, ≤, d) be a partially ordered 2-metric space and T : X → X be a map. Then T is called a weak C-

contraction if there exists ψ : [0,∞)2→[0,∞) which is continuous, and ψ(s, t) = 0 if and only if s = t = 0 such that 
d(Tx, Ty, a) ≤ ½[d(x, Ty, a) + d(y, Tx, a)] – ψ(d(x, Ty, a), d(y, Tx, a)) ……..(1.1) 

for all x, y, a є X and x ≤ y  or y ≤x. 
 

Theorem 1.2 Let (X, ≤, d) be a complete, partially ordered 2-metric space and T: X→X be a weak C-contraction such that: 
1. T is continuous and non-decreasing 
1. There exists x0 є X with x0 ≤ T x0. 
Then T has a fixed point. 
Proof If x0= T x0, then the proof is finished. Suppose now that x0 ≤ T x0. Since T is a non-decreasing map, we have x0 ≤ T x0  

≤ T2x0  ≤ …≤ Tnx0  …... Put xn+1 = T𝑥𝑛. Then, for all n ≥1, from (1.1) and noting that xn-1 and xn are comparable, we get 
d(xn+1, xn, a) = d(Txn, T xn-1, a) 
≤ ½[d(xn, T xn-1, a) + d(xn-1, Txn, a) – ψ(d(xn, T xn-1, a), d(xn-1, Txn, a)) 
= ½[d(xn, xn, a) + d(xn-1, xn+1, a)– ψ(d(xn, xn, a), d(xn-1, xn+1, a)) 
=1/2[ d(xn-1, xn+1, a) – ψ(0, d(xn-1, xn+1, a)) 
≤1/2[ d(xn-1, xn+1, a) ………………………………………………………………………(1.2) 
for all a є X. By choosing a = xn-1   in (1.2), we obtain d(xn+1, xn, xn-1) ≤0, that is, 
d(xn+1, xn, xn-1) = 0……………. …………………………………………………………..(1.3) 
 

It follows from (1.2) and (1.3) that 
d(xn+1, xn, a) ≤1/2 d(xn-1, xn+1, a) 

    ≤ 1/2[d(x xn-1, xn, a) + d(xn, xn+1, a) + d(xn –1, xn, xn+1) 
       =1/2d(xn-1, xn, a) + d(xn, xn+1, a) ………………………. ……………………(1.4) 

It implies that 
d(𝑥𝑛, xn+1, a) ≤ d(xn-1, xn, a)……………………………….. ……………………………….(1.5) 
Thus {d(xn, xn+1, a)} is a decreasing sequence of non-negative real numbers and hence it 
is convergent. Let 

limn→∞ d(xn, xn+1, a) = r…………………. …………………………………………………(1.6) 
Taking the limit as n→∞in (1.4) and using (1.6), we get 
r ≤ limn∞ 1/2 d(xn-1, xn+1, a) ≤ ½ (r + r) = r. 
That is, 

limn→∞ d xn-1, xn+1, a) =2r.         …………………………………………………………… (1.7) 
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Taking the limit as n→∞ in (1.2) and using (1.6), (1.7), we get r ≤½ 2r – ψ(0, 2r) ≤½2r = r. It implies that 

 ψ(0, 2r) = 0, that is, r =0. Then (1.6) becomes 
Lim n→∞ d(xn+1, xn, a) = 0 ………………................................................................................. (1.8) 
From (1.5), we have if d(xn-1, xn, a) = 0, then d(xn, xn+1, a) =0. Since d(𝑥1, 𝑥2, 𝑥3) = 0, we have d(xn, xn+1, x0) = 0 for all n є 

N. Since d(xn-1, xm, xm) = 0, we have 
d(xn, xn+1, xm) =0 ………………………………………………………………………………….(1.9) 
for all n ≥ m–1, For 0 ≤n < m–1, noting that m–1 ≥ n +1, from(1.9) we have 
d(𝑥𝑚−1, xm, xn+1) = d(xm-1, xm, xn) = 0. 
It implies that 

d(xn, xn+1, xm) ≤ d(xn, xn+1, xm-1) + d(xn+1, xm, xm-1) + d(xm, xn, xm-1) 
  = d(xn, xn+1, xm-1)……………………………………………………………... (1.10) 

Since d(xn, xn+1, xn+1) = 0, from(1.10) we have 
d(xn, xn+1, xm) =0……………………………………………………………………………………..(1.11) 
for all 0 ≤n < m– 1. From (1.9) and (1.11), we have d(xn, xn+1, xm) = 0 for all n,m ∈ N. Now, for all i, j, k є N with i < j, we 

have d(xj–1, xj, xi) = d(xj–1, xj, xk) = 0. Therefore, 
d(xi, xj,  xk) ≤ d(xi, xj, xj–1) + d(xi, xk, xj–1) + d(xk, xi, xj–1) 

       ≤ d(xi, xj–1, xk) 
                     ≤……. 
                     ≤ d(xi, xi, xk )= 0. 
This proves that for all i, j, k є N 
d(xi, xi, xk) =0 ……………………………………………………………………………………….. (1.12) 
 

In what follows, we will prove that {𝑥𝑛} is a Cauchy sequence. Suppose to the contrary that {xn} is not a Cauchy sequence. 

Then there exists ε > 0 for which we can find subsequences {xm(k)} and {xn(k)} where n(k) is the smallest integer such that 

n(k) > m(k) > k 
And 
d(xn(k), xm(k), a) ≥ ε ………………………………………………………………………………………………(1.13) 
for all k ∈N. Therefore, 
d(xn(k)–1, xm(k), a) < ε…………………………………………………………………………………...(1.14) 
By using (1.12), (1.13) and (1.14), we have 
ε ≤ d(xn(k), xm(k), a) 
≤ d(xn(k), xn(k)–1, a) + d(xn(k)–1, xm(k), a) + d(xn(k), xm(k), xn(k)–1) 
= d(xn(k), xn(k)–1, a) + d(xn(k)–1, xm(k), a) 
< d(xn(k), xn(k)–1, a) + ε…………………………………………………………………………………..(1.15) 
Taking the limit as k→∞ in (1.15) and using (1.8), we have 
Lim k→∞d(xn(k), xm(k), a) = limk→∞d(xn(k)–1, xm(k), a) = ε………………………………………………(1.16) 
Also, from (1.12), we have 
d(xm(k), xn(k)–1, a) ≤ d(xm(k), xm(k)–1, a) + d(xm(k)–1, xn(k)–1, a) + d(xm(k), xn(k)–1, xm(k)–1) 
                                  = d(xm(k), xm(k)–1, a) + d(xm(k)–1, xn(k)–1, a) 
≤ d(xm(k), xm(k)–1, a) + d(xm(k)–1, xn(k), a) + d(xn(k)–1, xn(k), a) +   d(xm(k)–1, xn(k)–1, xn(k)) 
= d(xm(k), xm(k)–1, a) + d(xm(k)–1, xn(k), a) + d(xn(k)–1, xn(k), a)……………………….(1.17) 
And 
 

d(xm(k)–1, xn(k), a) ≤ d(xm(k)–1, xm(k), a) + d(xn(k), xm(k), a) + d(xm(k)–1, xn(k), xm(k)) 
                                 = d(xm(k)–1, xm(k), a) + d(xn(k), xm(k), a)…………………………………….. (1.18) 
 

Taking the limit as k→∞ in (1.17), (1.18) and using (1.8), (1.16), we obtain 
 limk→∞ d(xm(k)–1, xn(k), a) = ε……………………………………………………………………… (1.19) 
Since n(k) > m(k) and xn(k)–1, xm(k)–1 are comparable, by using (1.1), we have 
ε ≤d(xn(k), xm(k), a) 
= d(T xn(k)–1, Txm(k)–1, a) 
≤ ½ [d(xn(k)–1, T xm(k)–1, a) + d(xm(k)–1, Txn(k)–1, a)] 
     – ψ(d(xn(k)–1, T xm(k)–1, a), d(xm(k)–1, Txn(k)–1, a)) 
=½ [d(xn(k)–1, xm(k), a) + d(xm(k)–1, xn(k), a)] 
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   – ψ(d(xn(k)–1, xm(k), a), d(xm(k)–1, xn(k), a))……………………………………………………………. (1.20) 
Taking the limit as k→∞ in (1.20) and using (1.16), (1.19) and the continuity of ψ, we have 
ε ≤ ½  (ε + ε) – ψ(ε, ε) = ε – ψ(ε, ε) ≤ ε. 
It proves that ψ(ε, ε) = 0, that is, ε =0. It is a contradiction. And this proves that {𝑥𝑛} is a Cauchy sequence. Since X is 

complete, there exists z є X such that limn→∞ 𝑥𝑛= z. It follows from the continuity of T that   

 z = lim n→∞ xn+1 = lim n→∞ Txn = Tz. Then z is a fixed point of T. 
The next result is another one for the existence of the fixed point of a weak C-contraction 
on a 2-metric space. 
Theorem 1.3 Let (X, ≤, d) be a complete, partially ordered 2-metric space and T : X→X be a weak C-contraction such that: 
1. T is non-decreasing. 
1. If {𝑥𝑛} is non-decreasing such that limn→∞ xn = x, then xn ≤ x for all n є N. 
3. There exists x0 є X with x0 ≤ Tx0. 
Then T has a fixed point. 
Proof As in the proof of Theorem 1.2, we have a Cauchy sequence {𝑥𝑛} with limn→∞ 𝑥𝑛 = z in X. We only have to prove 

that Tz = z. Since {𝑥𝑛} is non-decreasing and limn→∞ 𝑥𝑛 = z, we have 𝑥𝑛 ≤ z for all n є N. It follows from (1.1) that 
d(xn+1, Tz, a) = d(T𝑥𝑛, Tz, a) 

        ≤½ [d (xn, Tz, a) + d(z, Txn, a) – ψ(d(xn, Tz, a), d(z, Txn, a)) 
       = ½ [d (xn, Tz, a) + d(z, xn+1, a) – ψ(d(xn, Tz, a), d(z, xn+1, a)) ……………………………………(1.21) 

Taking the limit as n→∞in (1.21), we have 
d(z, Tz, a) ≤½ [d(z, Tz, a) + d(z, z, a) – ψ(d(z, Tz, a), d(z, z, a)) 
     ≤½ d(z, Tz, a) – ψd(z, Tz, a), 0) 
                ≤½d(z, Tz, a). 
It implies that d(z, Tz, a) = 0 for all a є X, that is, Tz = z. 
So, we proved a sufficient condition for the uniqueness of the fixed point in Theorem 1.2 and Theorem 1.3. 
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